

Form C: Type Test Verification Report

All Micro-generators connected to the **DNO Distribution Network** shall be **Fully Type Tested**. This form is the **Manufacturer**'s declaration of compliance with the requirements of EREC G98.

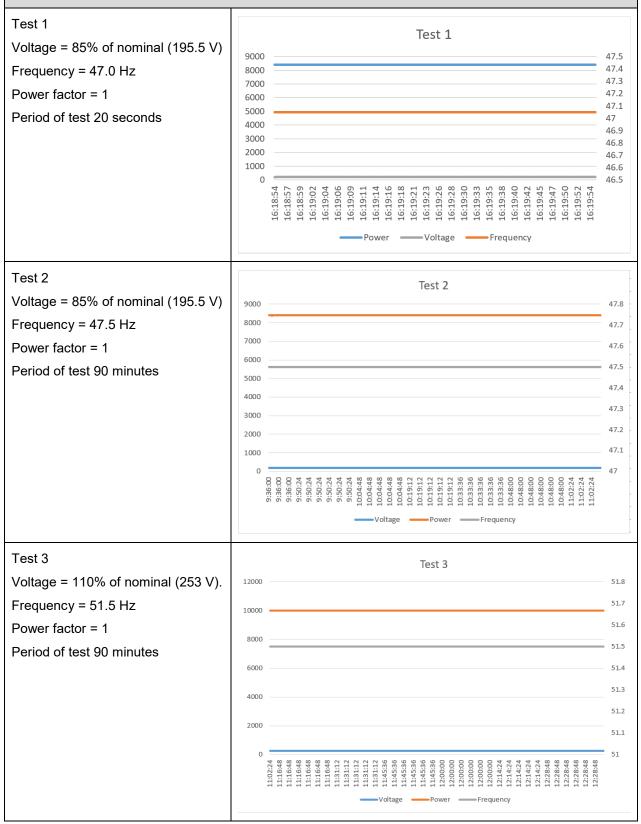
This form should be used when making a Type Test submission to the Energy Networks Association (ENA) Type Test Register.

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA Type Test Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the system reference), and this form does not need to be submitted.

Manufacturer's reference number						
Micro-generator technology		Battery Electric Energy Storage System with Photovoltaic hybrid inverter (inverter model: AIO-H3-10.0; AIO-H3-8.0; AIO-H3-6.0;AIO-H3-5.0)				
Manufactur	er name		FOXESS C	Co., Ltd.		
Address				No.939, Jinhai Third Road, New Airport Industry Area, Longwan District, Wenzhou, Zhejiang, China		
Tel	0510-6809	2998		Fax		
E-mail	foxrd@fox	-ess.com		Web site	www.fox-ess.com	
		Connection (Dption			
Registered use separate	e sheet if	5.0	kW three p	hase		
more than of connection of		6.0	kW three p	hase		
		8.0	kW three p	hase		
		10.0	kW three phase			
Energy storage 5.2 – 10.4 capacity for Electricity Storage devices		kWh				
Monufacture			Loortify the	t all products are	noticed by the company with the choice	

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above **Fully Type Tested** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98.

Signed	BEin	On behalf of	FOXESS Co., Ltd.


Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Operating Range: This test should be carried out as specified in A.1.2.10.

Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.

Test 4	Test 4	
Voltage = 110% of nominal (253 V).	Test 4	52.30
Frequency = 52.0 Hz	10000.00	52.20
Power factor = 1		52.10
Period of test 15 minutes	8000.00	52.00
	6000.00	51.90
	4000.00	51.80
	2000.00	51.70 51.60
	0.00	51.50
	12:39:17 12:39:42 12:39:42 12:40:34 12:41:50 12:41:50 12:41:50 12:42:43 12:42:43 12:44:50 12:44:52 12:44:54 12:44:54 12:44:54 12:44:54 12:44:54 12:44:54 12:44:54 12:44:54 12:44:54 12:44:54 12:45:16 12:45:16 12:45:16 12:45:16 12:45:16 12:45:16 12:45:16 12:45:16 12:45:16 12:45:16 12:45:16 12:45:16 12:55:23 12:55:255 12:55:255 12:55:255 12:55:255 12:55:255 12:55:255 12:55:255 12:55	
	——Voltage ——Power ——Frequency	
Test 5	Test 5	50.0
Voltage = 100% of nominal (230 V).	12000	50.3 50.2
Frequency = 50.0 Hz	10000	50.1
Power factor = 1	8000	50
Period of test 90 minutes	6000	49.9
	4000	49.8 49.7
	2000	49.6
	0	49.5
	13:47:41 13:47:41 13:55:15 13:55:15 13:55:15 13:55:15 14:01:35 14:01:35 14:10:35 14:10:35 14:15:29 14:15:29 14:15:29 14:15:29 14:25:26 14:25:26 14:25:26 14:35:26 14:26 14:35:	
	Power Voltage Frequency	
Test 6 RoCoF withstand	Test 6	
Confirm that the Micro-Generating	12000	51.85
Plant is capable of staying connected to the Distribution	10000	51.35
Network and operate at rates of	8000	50.85 50.35
change of frequency up to 1 Hzs ⁻⁸ as measured over a period of 500 ms.	6000	49.85
	4000	49.35
	2000	48.85
	0	48.35 47.85
	0.495.52 0.495.55 0.495.56 0.495.56 0.495.56 0.495.56 0.495.56 0.495.56 0.495.06 0.450.06 0.450.06 0.450.0100000000000000000000000000000000	
	Power Voltage Frequency	

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2									
Micro-gen	erator rating p	per phase (rpp)	3.33	kW I		Model: AIO-H3-10.0			
measurem	ents are ident ical for each p	p-generator s, tick ical for all three ph hase, please repli esults for each pha	ases. If the harmo cate this section w	onics are					
Harmonic	At 45-55% c	of Registered Capa	acity1	Limit in BS E 61000-3-2 ir		Higher limit for odd harmonics 21			
	Measured V	alue MV in Amps		01000-0-2 1	ГАпрэ	and above			
	L1	L2	L3						
2	0.019	0.022	0.029	1.080					
3	0.124	0.129	0.117	2.300					
4	0.025	0.033	0.010	0.430					
5	0.025	0.034	0.027	1.140					
6	0.010	0.014	0.011	0.300					
7	0.018	0.024	0.022	0.770					
8	0.013	0.007	0.015	0.230					
9	0.023	0.027	0.023	0.400					
10	0.008	0.007	0.011	0.184					
11	0.024	0.028	0.024	0.330					
12	0.006	0.006	0.007	0.153					
13	0.018	0.020	0.018	0.210					
14	0.006	0.009	0.006	0.131					
15	0.021	0.022	0.021	0.150					
16	0.007	0.010	0.006	0.115					
17	0.023	0.026	0.023	0.132					
18	0.006	0.006	0.005	0.102					
19	0.017	0.019	0.016	0.118					

¹ See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

20	0.005	0.005	0.006	0.092	
21	0.016	0.018	0.016	0.107	0.160
22	0.006	0.006	0.007	0.084	
23	0.019	0.019	0.018	0.098	0.147
24	0.007	0.007	0.006	0.077	
25	0.012	0.014	0.012	0.090	0.135
26	0.006	0.009	0.005	0.071	
27	0.013	0.013	0.012	0.083	0.124
28	0.006	0.008	0.005	0.066	
29	0.013	0.013	0.012	0.078	0.117
30	0.005	0.006	0.004	0.061	
31	0.010	0.010	0.009	0.073	0.109
32	0.004	0.005	0.004	0.058	
33	0.009	0.009	0.008	0.068	0.102
34	0.004	0.005	0.004	0.054	
35	0.009	0.009	0.009	0.064	0.096
36	0.005	0.006	0.004	0.051	
37	0.007	0.007	0.007	0.061	0.091
38	0.004	0.006	0.004	0.048	
39	0.007	0.006	0.006	0.058	0.087
40	0.004	0.006	0.004	0.046	
Harmonic	100%	of Registered C	apacity	Model: AIO-H3-10.0	
	Measured Value MV in Amps			Limit in BS EN	Higher limit for
	L1	L2	L3	61000-3-2 in Amps	odd harmonics 21 and above
2	0.015	0.021	0.024	1.080	
3	0.227	0.235	0.215	2.300	
4	0.036	0.047	0.013	0.430	

5	0.055	0.065	0.059	1.140	
6	0.010	0.015	0.009	0.300	
7	0.032	0.031	0.029	0.770	
8	0.024	0.020	0.022	0.230	
9	0.019	0.021	0.016	0.400	
10	0.012	0.014	0.016	0.184	
11	0.019	0.021	0.018	0.330	
12	0.006	0.010	0.008	0.153	
13	0.014	0.019	0.014	0.210	
14	0.007	0.008	0.006	0.131	
15	0.017	0.021	0.016	0.150	
16	0.009	0.010	0.007	0.115	
17	0.019	0.022	0.018	0.132	
18	0.006	0.008	0.006	0.102	
19	0.014	0.018	0.013	0.118	
20	0.010	0.012	0.011	0.092	
21	0.014	0.017	0.013	0.107	0.160
22	0.007	0.010	0.010	0.084	
23	0.017	0.020	0.017	0.098	0.147
24	0.007	0.008	0.007	0.077	
25	0.011	0.014	0.012	0.090	0.135
26	0.007	0.007	0.005	0.071	
27	0.012	0.014	0.011	0.083	0.124
28	0.007	0.007	0.005	0.066	
29	0.015	0.017	0.014	0.078	0.117
30	0.005	0.006	0.004	0.061	
31	0.009	0.011	0.009	0.073	0.109
		•			

32	0.005	0.006	0.006	0.058	
33	0.010	0.012	0.009	0.068	0.102
34	0.005	0.006	0.005	0.054	
35	0.012	0.013	0.011	0.064	0.096
36	0.004	0.005	0.004	0.051	
37	0.009	0.010	0.008	0.061	0.091
38	0.006	0.006	0.004	0.048	
39	0.008	0.009	0.008	0.058	0.087
40	0.005	0.005	0.003	0.046	

Micro-generator rating per phase (rpp)			2.66	kW		Model: AIO-H3-8.0	
For 3-phase Micro-generator s, tick this box if harmonic measurements are identical for all three phases. If the harmonics a not identical for each phase, please replicate this section with the results for each phase.							
Harmonic	At 45-55% of F	Registered Capa	acity2	Limit in B 61000-3-2		Higher limit for odd harmonics 21	
	Measured Valu	ue MV in Amps		01000-3-2	2 in Amps	and above	
	L1	L2	L3				
2	0.024	0.023	0.029	1.080			
3	0.106	0.110	0.100	2.300			
4	0.024	0.023	0.013	0.430			
5	0.024	0.031	0.026	1.140			
6	0.009	0.009	0.014	0.300			
7	0.019	0.026	0.025	0.770			
8	0.013	0.010	0.010	0.230			
9	0.027	0.027	0.027	0.400			
10	0.007	0.009	0.008	0.184			

² See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

11	0.028	0.029	0.028	0.330	
12	0.006	0.006	0.007	0.153	
13	0.021	0.024	0.021	0.210	
14	0.007	0.008	0.008	0.131	
15	0.021	0.022	0.020	0.150	
16	0.008	0.007	0.008	0.115	
17	0.022	0.022	0.021	0.132	
18	0.006	0.006	0.006	0.102	
19	0.016	0.016	0.014	0.118	
20	0.005	0.004	0.005	0.092	
21	0.015	0.015	0.013	0.107	0.160
22	0.006	0.005	0.006	0.084	
23	0.016	0.016	0.013	0.098	0.147
24	0.006	0.006	0.006	0.077	
25	0.010	0.011	0.008	0.090	0.135
26	0.007	0.006	0.007	0.071	
27	0.010	0.010	0.008	0.083	0.124
28	0.006	0.006	0.006	0.066	
29	0.010	0.009	0.008	0.078	0.117
30	0.004	0.004	0.004	0.061	
31	0.008	0.008	0.007	0.073	0.109
32	0.004	0.003	0.004	0.058	
33	0.007	0.007	0.006	0.068	0.102
34	0.004	0.004	0.004	0.054	
35	0.007	0.007	0.007	0.064	0.096
36	0.004	0.004	0.004	0.051	
37	0.006	0.006	0.006	0.061	0.091
	1	1	I	I	I

38	0.005	0.004	0.005	0.048	
39	0.005	0.005	0.006	0.058	0.087
40	0.004	0.004	0.005	0.046	
Harmonic	100%	of Registered C	Capacity	Model: AIO-H3-8.0	
	Measured Valu	ue MV in Amps		Limit in BS EN	Higher limit for
	L1	L2	L3	61000-3-2 in Amps	odd harmonics 21 and above
2	0.012	0.012	0.015	1.080	
3	0.176	0.184	0.163	2.300	
4	0.029	0.041	0.010	0.430	
5	0.056	0.065	0.058	1.140	
6	0.008	0.012	0.007	0.300	
7	0.030	0.032	0.031	0.770	
8	0.020	0.013	0.020	0.230	
9	0.019	0.024	0.016	0.400	
10	0.011	0.011	0.014	0.184	
11	0.025	0.029	0.026	0.330	
12	0.007	0.009	0.007	0.153	
13	0.017	0.023	0.017	0.210	
14	0.007	0.008	0.004	0.131	
15	0.017	0.021	0.016	0.150	
16	0.008	0.010	0.005	0.115	
17	0.024	0.026	0.024	0.132	
18	0.006	0.007	0.006	0.102	
19	0.015	0.018	0.014	0.118	
20	0.008	0.008	0.009	0.092	
21	0.014	0.018	0.014	0.107	0.160
22	0.007	0.008	0.008	0.084	

23	0.019	0.020	0.019	0.098	0.147
24	0.007	0.008	0.006	0.077	
25	0.012	0.014	0.012	0.090	0.135
26	0.006	0.007	0.004	0.071	
27	0.013	0.014	0.012	0.083	0.124
28	0.006	0.007	0.004	0.066	
29	0.015	0.016	0.014	0.078	0.117
30	0.004	0.006	0.003	0.061	
31	0.009	0.010	0.009	0.073	0.109
32	0.004	0.005	0.004	0.058	
33	0.010	0.011	0.009	0.068	0.102
34	0.005	0.006	0.004	0.054	
35	0.010	0.010	0.009	0.064	0.096
36	0.004	0.005	0.003	0.051	
37	0.008	0.009	0.007	0.061	0.091
38	0.005	0.005	0.003	0.048	
39	0.008	0.008	0.008	0.058	0.087
40	0.004	0.005	0.002	0.046	

Micro-generator rating per phase (rpp) 2.0				kW		Model: AIO-H3-6.0	
For 3-phase Micro-generator s, tick this box if harmonic measurements are identical for all three phases. If the harmonics are not identical for each phase, please replicate this section with the results for each phase.							
Harmonic	At 45-55% of Registered Capacity3			Limit in E	3S EN -2 in Amps		Higher limit for odd harmonics 21
	Measured Valu	01000-3	-2 III Allips		and above		
	L1	L2	L3				

³ See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

	-				
2	0.033	0.029	0.030	1.080	
3	0.097	0.109	0.092	2.300	
4	0.024	0.027	0.012	0.430	
5	0.027	0.034	0.030	1.140	
6	0.008	0.010	0.010	0.300	
7	0.020	0.024	0.026	0.770	
8	0.019	0.015	0.015	0.230	
9	0.023	0.026	0.025	0.400	
10	0.011	0.010	0.009	0.184	
11	0.018	0.021	0.019	0.330	
12	0.006	0.006	0.004	0.153	
13	0.014	0.015	0.012	0.210	
14	0.004	0.005	0.003	0.131	
15	0.010	0.011	0.008	0.150	
16	0.004	0.004	0.003	0.115	
17	0.008	0.009	0.006	0.132	
18	0.005	0.005	0.004	0.102	
19	0.006	0.006	0.006	0.118	
20	0.009	0.008	0.008	0.092	
21	0.006	0.006	0.006	0.107	0.160
22	0.006	0.007	0.006	0.084	
23	0.007	0.006	0.006	0.098	0.147
24	0.004	0.005	0.004	0.077	
25	0.006	0.005	0.005	0.090	0.135
26	0.003	0.004	0.003	0.071	
27	0.005	0.005	0.005	0.083	0.124
28	0.003	0.003	0.003	0.066	

29	0.005	0.005	0.005	0.078	0.117	
30	0.003	0.004	0.004	0.061		
31	0.005	0.004	0.003	0.073	0.109	
32	0.005	0.006	0.006	0.058		
33	0.003	0.004	0.003	0.068	0.102	
34	0.004	0.005	0.005	0.054		
35	0.003	0.003	0.003	0.064	0.096	
36	0.002	0.004	0.003	0.051		
37	0.003	0.003	0.002	0.061	0.091	
38	0.002	0.003	0.002	0.048		
39	0.003	0.003	0.002	0.058	0.087	
40	0.002	0.003	0.002	0.046		
Harmonic	100%	100% of Registered Capacity		Model: AIO-H3-6.0		
	Measured Valu	ue MV in Amps		Limit in BS EN 61000-3-2 in Amps	Higher limit for odd harmonics 21 and above	
	L1	L2	L3	01000-3-2 in Amps		
2	0.015	0.020	0.020	1.080		
3	0.142	0.146	0.131	2.300		
4	0.025	0.034	0.006	0.430		
5	0.042	0.051	0.043	1.140		
6	0.009	0.013	0.009	0.300		
7	0.025	0.029	0.026	0.770		
8	0.016	0.010	0.015	0.230		
9	0.019	0.024	0.018	0.400		
10	0.008	0.008	0.011	0.184		
11	0.020	0.024	0.020	0.330		
10	0.004	0.005	0.005	0.153		
12	0.004	0.005	0.000	0.100		
12	0.004	0.018	0.014	0.210		

14	0.004	0.006	0.003	0.131	
15	0.015	0.018	0.014	0.150	
16	0.005	0.008	0.004	0.115	
17	0.017	0.019	0.017	0.132	
18	0.004	0.004	0.004	0.102	
19	0.012	0.016	0.012	0.118	
20	0.006	0.005	0.008	0.092	
21	0.012	0.016	0.012	0.107	0.160
22	0.005	0.005	0.006	0.084	
23	0.015	0.016	0.014	0.098	0.147
24	0.005	0.005	0.005	0.077	
25	0.009	0.012	0.009	0.090	0.135
26	0.005	0.006	0.003	0.071	
27	0.010	0.011	0.009	0.083	0.124
28	0.004	0.006	0.004	0.066	
29	0.011	0.012	0.010	0.078	0.117
30	0.003	0.004	0.003	0.061	
31	0.008	0.009	0.007	0.073	0.109
32	0.003	0.003	0.004	0.058	
33	0.007	0.009	0.007	0.068	0.102
34	0.003	0.003	0.003	0.054	
35	0.008	0.009	0.008	0.064	0.096
36	0.003	0.004	0.002	0.051	
37	0.006	0.007	0.006	0.061	0.091
38	0.004	0.005	0.003	0.048	
39	0.005	0.006	0.006	0.058	0.087
40	0.003	0.004	0.002	0.046	

Micro-gen	erator rating	per phase(rpp)	1.66	kW		Model: AIO-H3-5.0	
measurem	ents are ident ical for each p	ical for all three ph	this box if harmon nases. If the harmon cate this section w nse.	onics are			
Harmonic	At 45-55% c	of Registered Capa	acity4	Limit in BS E 61000-3-2 in		Higher limit for odd harmonics 21	
	Measured V	alue MV in Amps		01000-3-2 11	Amps	and above	
	L1	L2	L3				
2	0.024	0.015	0.024	1.080			
3	0.090	0.102	0.088	2.300			
4	0.022	0.023	0.011	0.430			
5	0.031	0.029	0.038	1.140			
6	0.006	0.008	0.008	0.300			
7	0.025	0.026	0.032	0.770			
8	0.019	0.012	0.014	0.230			
9	0.024	0.026	0.027	0.400			
10	0.009	0.008	0.010	0.184			
11	0.018	0.020	0.018	0.330			
12	0.005	0.003	0.005	0.153			
13	0.012	0.013	0.009	0.210			
14	0.002	0.003	0.002	0.131			
15	0.007	0.008	0.005	0.150			
16	0.003	0.003	0.002	0.115			
17	0.005	0.006	0.006	0.132			
18	0.004	0.004	0.004	0.102			
19	0.005	0.004	0.008	0.118			
20	0.009	0.008	0.008	0.092			

⁴ See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

21	0.006	0.005	0.008	0.107	0.160
22	0.006	0.006	0.006	0.084	
23	0.007	0.006	0.007	0.098	0.147
24	0.004	0.004	0.004	0.077	
25	0.006	0.005	0.005	0.090	0.135
26	0.002	0.003	0.003	0.071	
27	0.004	0.005	0.003	0.083	0.124
28	0.002	0.003	0.003	0.066	
29	0.004	0.004	0.003	0.078	0.117
30	0.004	0.004	0.004	0.061	
31	0.003	0.003	0.003	0.073	0.109
32	0.006	0.006	0.006	0.058	
33	0.002	0.002	0.003	0.068	0.102
34	0.004	0.005	0.004	0.054	
35	0.002	0.002	0.003	0.064	0.096
36	0.002	0.003	0.003	0.051	
37	0.002	0.002	0.003	0.061	0.091
38	0.002	0.002	0.002	0.048	
39	0.003	0.002	0.002	0.058	0.087
40	0.001	0.002	0.002	0.046	
Harmonic	100%	of Registered C	apacity	Model: AIO-H3-5.0	
	Measured Valu	ue MV in Amps		Limit in BS EN	Higher limit for
	L1	L2	L3	61000-3-2 in Amps	odd harmonics 21 and above
2	0.021	0.018	0.028	1.080	
3	0.128	0.122	0.113	2.300	
4	0.023	0.029	0.008	0.430	
5	0.035	0.042	0.036	1.140	
	-				

6	0.007	0.007	0.007	0.300	
7	0.021	0.025	0.022	0.770	
8	0.017	0.012	0.018	0.230	
9	0.020	0.022	0.019	0.400	
10	0.009	0.009	0.013	0.184	
11	0.018	0.021	0.018	0.330	
12	0.004	0.005	0.006	0.153	
13	0.013	0.014	0.013	0.210	
14	0.005	0.005	0.004	0.131	
15	0.015	0.017	0.015	0.150	
16	0.005	0.005	0.004	0.115	
17	0.017	0.019	0.017	0.132	
18	0.003	0.004	0.004	0.102	
19	0.012	0.013	0.012	0.118	
20	0.005	0.006	0.008	0.092	
21	0.012	0.013	0.011	0.107	0.160
22	0.004	0.005	0.007	0.084	
23	0.014	0.014	0.013	0.098	0.147
24	0.005	0.004	0.004	0.077	
25	0.009	0.010	0.008	0.090	0.135
26	0.005	0.004	0.003	0.071	
27	0.010	0.009	0.008	0.083	0.124
28	0.005	0.004	0.004	0.066	
29	0.010	0.010	0.009	0.078	0.117
30	0.003	0.002	0.002	0.061	
31	0.007	0.007	0.006	0.073	0.109
32	0.003	0.002	0.004	0.058	

33	0.007	0.007	0.006	0.068	0.102
34	0.003	0.002	0.003	0.054	
35	0.007	0.006	0.006	0.064	0.096
36	0.003	0.002	0.002	0.051	
37	0.006	0.005	0.005	0.061	0.091
38	0.003	0.003	0.003	0.048	
39	0.005	0.005	0.005	0.058	0.087
40	0.003	0.003	0.002	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Additional comments:

Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

The standard test impedance is 0.4 Ω for a single phase **Micro-generating Plant** (and for a two phase unit in a three phase system) and 0.24 Ω for a three phase **Micro-generating Plant** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

Test start date	2021-07-19			Test end da	ate	2021-07-19		
Test location		Room 104, 204, 205, Building 1, No. 6, Industrial South Road, Songshan Lake District, Dongguan, Guangdong Province, P. R. China						
	Starting			Stopping			Running	
	d(max)	d(c)	d(t)	d(max) d(c)		d(t)	Pst	Plt 2 hours
Measured Values at test impedance	0.56	0.44 0 0.59 0.48		0	0.16	0.17		

Normalised to standard impedance	0.56	0.44	0		0.59	0.48	0		0.16		0.17
Normalised to required maximum impedance	NA	NA	NA		NA	NA	N	A	NA		NA
Limits set under BS EN 61000-3-11	4%	3.3%	3.39	%	4%	3.3%	3.	3%	1.0		0.65
Test Impedance	R	0.4		Ω			Х	0.25		Ω	
Standard	R	0.24 *		Ω			Х	0.15	*	Ω	
Impedance		0.4 ^						0.25	٨		
Maximum Impedance	R			Ω			х			Ω	
*Applies to three	e phase ar	nd split s	ingle	pha	se Micro-ge	nerators. D)ele	te as a	appropria	ate.	

[^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system. Delete as appropriate.

Power quality – DC injection: This test should be carried out in accordance with A 1.3.4 as applicable. The % **DC** injection ("as % of rated AC current" below) is calculated as follows:

% **DC** injection = Recorded **DC** value in Amps / base current

where the base current is the **Registered Capacity** (W) / 230 V. The % **DC** injection should not be greater than 0.25%.

	AIO-H3-10.0						
Test power level	20%	50%	75%	100%			
Recorded DC value in Amps(L1)	0.0007	0.0035	0.003	0.003			
as % of rated AC current(L1)	0.005%	0.024%	0.021%	0.021%			
Recorded DC value in Amps(L2)	0.002	0.004	0.006	0.008			
as % of rated AC current(L2)	0.014%	0.028%	0.041%	0.055%			
Recorded DC value in Amps(L3)	0.007	0.008	0.007	0.007			
as % of rated AC current(L3)	0.048%	0.055%	0.048%	0.048%			
Limit	0.25%	0.25%	0.25%	0.25%			

	AIO-H	3-8.0		
Test power level	20%	50%	75%	100%
Recorded DC value in Amps(L1)	0.002	0.004	0.004	0.003
as % of rated AC current(L1)	0.017%	0.035%	0.035%	0.026%
Recorded DC value in Amps(L2)	0.004	0.005	0.006	0.003
as % of rated AC current(L2)	0.035%	0.043%	0.052%	0.026%
Recorded DC value in Amps(L3)	0.004	0.008	0.009	0.006
as % of rated AC current(L3)	0.035%	0.069%	0.078%	0.052%
Limit	0.25%	0.25%	0.25%	0.25%
	AIO-H	3-6.0		
Test power level	20%	50%	75%	100%
Recorded DC value in Amps(L1)	0.003	0.005	0.006	0.007
as % of rated AC current(L1)	0.035%	0.058%	0.069%	0.081%
Recorded DC value in Amps(L2)	0.003	0.004	0.005	0.006
as % of rated AC current(L2)	0.035%	0.046%	0.058%	0.069%
Recorded DC value in Amps(L3)	0.006	0.008	0.009	0.008
as % of rated AC current(L3)	0.069%	0.092%	0.104%	0.092%
Limit	0.25%	0.25%	0.25%	0.25%
	AIO-H	3-5.0		
Test power level	20%	50%	75%	100%
Recorded DC value in Amps(L1)	0.002	0.005	0.008	0.006
as % of rated AC current(L1)	0.028%	0.069%	0.110%	0.083%
Recorded DC value in Amps(L2)	0.009	0.007	0.008	0.006
as % of rated AC current(L2)	0.124%	0.097%	0.110%	0.083%
Recorded DC value in Amps(L3)	0.008	0.007	0.008	0.013
as % of rated AC current(L3)	0.110%	0.097%	0.110%	0.179%
Limit	0.25%	0.25%	0.25%	0.25%

Power Quality – Power factor: This test shall be carried out in accordance with A.1.3.2 and A.2.3.2 at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within ±1.5% of the stated level during the test.

			•					
AIO-H3-10.0								
	216.2 V	230 V	253 V					
Measured value	0.999	0.999	0.999					
Power Factor Limit	>0.95	>0.95	>0.95					
	AIO-	H3-8.0						
	216.2 V	230 V	253 V					
Measured value	0.998	0.998	0.997					
Power Factor Limit	>0.95	>0.95	>0.95					
	AIO-	H3-6.0						
	216.2 V	230 V	253 V					
Measured value	0.997	0.996	0.995					
Power Factor Limit	>0.95	>0.95	>0.95					
	AIO-	H3-5.0						
	216.2 V	230 V	253 V					
Measured value	0.994	0.993	0.993					
Power Factor Limit	>0.95	>0.95	>0.95					

Protection – Frequency tests: These tests should be carried out in accordance with Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous). For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting		Trip test		"No trip tests"		
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip	
U/F stage 1	47.5 Hz	20 s	47.49 Hz	20.05s	47.7 Hz 30 s	No trip	
U/F stage 2	47 Hz	0.5 s	46.99 Hz	0.506s	47.2 Hz 19.5 s	No trip	
					46.8 Hz 0.45 s	No trip	
O/F stage 1	52 Hz	0.5 s	52.01Hz	0.503s	51.8 Hz 120.0 s	No trip	

	52.2 Hz 0.45 s	No trip
--	-------------------	---------

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Voltage tests: These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	184 V	2.5 s	183.9V	2.501s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	262.2 V	1.0 s	262.3V	1.002s	258.2 V 5.0 s	No trip
O/V stage 2	273.7 V	0.5 s	273.7V	0.510s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Loss of Mains test: For PV **Inverter**s shall be tested in accordance with BS EN 62116. Other **Micro-generator**s should be tested in accordance with A.2.2.4 at 10%, 55% and 100% of rated power.

For **Inverter**s tested to BS EN 62116 the following sub set of tests should be recorded in the following table.

Test Power and imbalance	33%	66%	100%	33%	66%	100%
	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5 s ⁵	0.391s	0.375 s	0.254 s	0.335 s	0.210 s	0.348 s

⁵ If the device requires additional shut down time (beyond 0.5 s but less than 1 s) then this should be stated on this form.

Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip under positive / negative vector shift.

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.0 Hz	+50 degrees	No trip
Negative Vector Shift	50.0 Hz	- 50 degrees	No trip

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip for the duration of the ramp up and ramp down test.

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	No trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip

Limited Frequency Sensitive Mode – Overfrequency test: This test should be carried out in accordance with A.1.2.8. The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%. The measurement tolerances are contained in A.1.2.8.

Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	9923	50.00		NA
Step b) 50.45 Hz ±0.05 Hz	9831	50.45		10.87%
Step c) 50.70 Hz ±0.10 Hz	9370	50.70	DC SOURCE	10.85%
Step d) 51.15 Hz ±0.05 Hz	8504	51.15		10.57%
Step e) 50.70 Hz ±0.10 Hz	9375	50.70		10.95%
Step f) 50.45 Hz ±0.05 Hz	9829	50.45		10.64%
Step g) 50.00 Hz ±0.01 Hz	9923	50.00		NA
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	4987.2	50.00		NA
Step b) 50.45 Hz ±0.05 Hz	4881.3	50.45		9.44%
Step c) 50.70 Hz ±0.10 Hz	4393.6	50.70		10.11%

Step d) 51.15 Hz ±0.05 Hz	3491.7	51.15	DC SOURCE	10.03%
Step e) 50.70 Hz ±0.10 Hz	4395.4	50.70		10.14%
Step f) 50.45 Hz ±0.05 Hz	4891.8	50.45		10.48%
Step g) 50.00 Hz ±0.01 Hz	4982.1	50.00		NA

Power output with falling frequency test: This test should be carried out in accordance with A.1.2.7.							
Test sequence	Measured Active Power Output	Frequency	Primary power source				
Test a) 50 Hz ± 0.01 Hz	9825 W	50.00 Hz	10129 W				
Test b) Point between 49.5 Hz and 49.6 Hz	9826 W	49.55 Hz	10226 W				
Test c) Point between 47.5 Hz and 47.6 Hz 9820 W 47.55 Hz 10167 W							
NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes							

Re-connection timer.

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the **Micro-generating Plant** does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 2.						
60s	65s	At 266.2 V	At 266.2 V At 180.0 V At 47.4 Hz At 52.1 Hz					
Confirmation that the Micro-generator does not re-connect.		No reconnection	No reconnection	No reconnection	No reconnection			

Fault level contribution: These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (**Inverter** connected) and Annex A2 A.2.3.4 (Synchronous). Please complete each entry, even if the fault contribution is zero.

For machines with electro-magnet	For Inverter output				
,		Time after fault	Volts	Amps	
Peak Short Circuit current	İ _p		20 ms	10V	12.5A
Initial Value of aperiodic current	A		100 ms	0	7A

Initial symmetrical short-circuit current*	I _k	250 ms	0	0
Decaying (aperiodic) component of short circuit current*	ідс	500 ms	0	0
Reactance/Resistance Ratio of source*	×/ _R	Time to trip	3.8ms	In seconds

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface (input port)	
Confirm that an input port is provided and can be used to reduce the Active Power output to zero	Yes
Provide high level description of logic interface, e.g. details in 9.4.3 such as AC or DC signal (the additional comments box below can be used)	Yes
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).	NA
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	NA
Cyber security	
Confirm that the Manufacturer or Installer of the Micro-generator has provided a statement describing how the Micro-generator has been designed to comply with cyber security requirements, as detailed in 9.7.	Yes
Additional comments	
Logic interface (input port) : The signal from the Micro generator that is being switched is DC 3.3V	